
Automatic Detection of Nonverbal Behavior
Predicts Learning in Dyadic Interactions

Andrea Stevenson Won, Jeremy N. Bailenson, and Joris H. Janssen

Abstract—Nonverbal behavior can reveal the psychological states of those engaged in interpersonal interaction. Previous research

has highlighted the relationship between gesture and learning during instruction. In the current study we applied readily available

computer vision hardware and machine learning algorithms to the gestures of teacher/student dyads (N ¼ 106) during a learning

session to automatically distinguish between high and low success learning interactions, operationalized by recall for information

presented during that learning session. Models predicted learning performance of the dyad with accuracies as high as 85.7 percent

when tested on dyads not included in the training set. In addition, correlations were found between summed measures of body

movement and learning score. We discuss theoretical and applied implications for learning.

Index Terms—Natural data set, machine learning, gesture recognition, collaborative learning
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1 INTRODUCTION

ATTENDING to nonverbal behavior is a key component of
teaching and learning. Beyond the meaningful ges-

tures that explicitly support content [1], body movements
relate to the attitudes of the participants and outcomes of
interactions. Gesture and posture in educational contexts
have thus been examined for what they may reveal about
teaching and learning (for a review, see Roth, [2]). In the fol-
lowing pages we review previous work investigating the
role of nonverbal behavior in teaching and learning. We dis-
cuss related work on automatically detecting affect and
other mental states. We then describe a new study utilizing
computer vision and machine learning to predict the out-
come of teaching/learning interactions, based on the gen-
eral tracked body movements of the interactants.

1.1 Gestures in Teaching and Learning

A number of studies have examined the relationship
between students’ nonverbal behavior and attentiveness
and comprehension. For example, students’ nonverbal
behaviors have been recorded and correlated with observ-
ers’ reports to predict students’ levels of engagement, with
the goal of developing automated systems that could help
predict and assist learning. Mota and Picard [3] used a pres-
sure sensitive chair to track the posture cues of children per-
forming a learning task at a desktop computer, relating
these cues to observers’ ratings of the children’s levels of
interest. Static postures and sequences of postures were
tracked with the goal of developing automatic detection

systems that could be used both to refine current under-
standing of behavior during learning, and to allow for the
development of learning tools. In 2008 Dragon et al. [4]
observed students using a computer tutor, and coded physi-
cal and affective behaviors. A separate group of researchers
then used this data to design an intelligent tutoring system
that used posture and facial feature tracking to detect
learner affect and adjust the computerized tutor accordingly
to optimize learning [5], [6]. These efforts provide a founda-
tion for further research to improve learning via detecting
nonverbal behavior.

Since successful communication between teacher and
student is one critical component of the learning process,
development of teacher/student rapport via synchronous
nonverbal behavior has also been examined in a teaching
context. In a 1976 study using human coders, LaFrance and
Broadbent [7] recorded classroom behavior, noting whether
students in small classroom settings a) mirrored (copied
their teacher’s movements on the other side of their body;
for example, raised the right hand when the teacher raised
his or her left hand) b) matched (copied their teacher’s ges-
tures using the same side of their body; for example raised
the right hand when the teacher raised his or her right
hand) or c) had incongruent behavior (not perceived by
observers to echo that of the teacher in any way). The
researchers found a correlation between synchrony (either
mirrored or matched movements between teacher and stu-
dent gestures) and students’ self reports of involvement
and rapport. Similarly, Bernieri [8] had coders rate per-
ceived movement synchrony (described as “simultaneous
movement, tempo similarity, and smoothness”) of high
school students in teaching/learning dyads. The synchrony
of the teaching interaction correlated with students’ self-
reported rapport. In a recent sudy [9], reciprocal gestures
(coded by humans) between teachers and students engaged
in a language task not only correlated with reported rap-
port, but also with higher student quiz scores.

Traditionally, research on nonverbal behavior has taken
advantage of humans’ top-down observational ability to
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perceive gestalt phenomena such as synchrony by using
human observers to code recorded data, as seen in many of
the studies described above. However, hand-coding non-
verbal behavior is extremely labor intensive. Data must be
recorded and coded post-task, or observers must watch the
participants in real time. In addition, observers bring their
own biases to the interpretation of behaviors, and may be
influenced by other factors such as facial expressions or the
content of the conversation. Thus, this kind of monitoring is
expensive and slow, and it is difficult to process large
amounts of data quickly or to evaluate various channels
independently. In the current study, leveraging the auto-
matic detection and analysis of gesture allowed us to exam-
ine large data sets. The research described in this paper
seeks to build on previous work by incorporating a more
bottom-up method of assessing the importance of body
movements in a naturalistic environment.

1.2 Automatic Detection and Analysis of Gesture

As an alternative to human observation and coding,
research on automatically detecting and analyzing nonver-
bal behavior to predict emotions and other affective states
has proceeded on many fronts over the past few decades.

Combining facial expression with other modalities,
Meservy et al. [10] used head and hand movements to detect
deception using video recordings. Similarly, Karpouzis et al.
[11] used multimodal signals, including facial expression,
hand gestures, and prosody (pitch and rhythm of voice) to
detect naturally occurring emotion during an interaction
between a human and an embodied agent. Research using
facial tracking alone to predict outcomes includes detecting
and identifying facial expressions [12]; distinguishing
between similar facial expressions, such as frustrated or
delighted smiles [13]; and identifying the tendency of partic-
ipants to make mistakes in a task [14]. Finally, recent work
combines the affective measurements from the individuals
in an interaction to assess outcome [15].

Gestural and postural information, especially large-scale
body movements, may be easier to access in natural condi-
tions than other information. For example, facial expres-
sions can be obscured by makeup, eyeglasses, or facial hair.
Lighting conditions, occlusion, or head position may also
make these expressions difficult to read. Ambient sound
may confuse audio cues, and physiological signals may
impose prohibitive constraints. Especially in nonlaboratory
environments, large-scale movements can be an important
addition to other modalities.

As Kleinsmith and Bianchi-Berthouze [16] and others
[17] demonstrate in their assimilation of the literature,
much of the current research on detecting affect has focused
on facial expressions, speech, and physiological signals.
However, assessing gross signals of body movement, such
as gesture and posture, also hold great promise for predict-
ing and interpreting affective states. Movements potentially
indicate general states of mind that are not necessarily spe-
cific to the verbal content of the conversation, and indicate
the continuous evolution of these states in dyads. Particu-
larly in interpersonal interactions, gestures may provide
complementary information to that derived from facial
expressions [18] or tone of voice because body movements

are not subject to the same degree of conscious control [19].
Gestures and body movements can alter how people con-
ceptualize abstract concepts [20] and even their sense of
their own dominance [21].

Body gestures specifically have been used to predict
affect. Kapur et al. [22] used a six-camera system to capture
the X, Y, Z positions of 14 markers on five participants
enacting four emotions. Machine learning was then used to
classify the recorded gestures as indicating sadness, joy,
anger or fear. Another experiment used video analysis of
enacted motions [23] to distinguish between joy, anger,
pleasure and sadness. In this experiment, participants were
asked to use repeated arm movements for each emotion, so
the classification was based on expressivity, rather than on
gestures particular to a specific emotion. As part of an
experiment assessing interpersonal touch via haptic devi-
ces, Bailenson et al. [24] demonstrated that a simple, two-
degree of freedom device could transmit emotions via hand
movements. In addition to these enacted emotions, natural
emotions have been detected using touch on a screen during
game play, which was used as the input to allow the auto-
matic discrimination of four emotional states [25]. Similarly,
the movements of players in a video game that tracked
body movements were captured and used to predict affec-
tive states, with accuracies comparable to those of human
observers’ predictions [26]. In another example using
recorded videos of speakers, the speakers’ automatically
tracked gestures were used to predict online ratings of that
video [27].

Nonverbal communication predicts a variety of out-
comes in interpersonal interactions, sometimes using very
short time periods (also called “thin slices”) of interaction
[28]. Some examples of thin slice prediction based on non-
verbal behavior include the rate at which doctors were
sued for malpractice based on the doctor’s tone of voice
during routine office visits [29]; ratings of teachers’ bias
based on ratings of their nonverbal behavior (but not their
verbal behavior) when speaking to students [30]; and the
overall and session level success of psychotherapy based
on the automatic coding of patient/therapist gestural syn-
chrony [31]. These experiments imply great potential for
detecting affect, predicting outcomes, and providing feed-
back to alter the course of an interaction using very short
glimpses of an interaction.

In the following study, we leverage current technologies
to measure gesture to predict the outcome of a teaching-
learning interaction.

1.2.1 Collecting and Processing Data

A key component of these kinds of automated systems is
using computer vision to collect data. While collecting
gesture automatically via computer is challenging, past
research indicates that body movements, even when
recorded as relatively coarse measures of movement, are
indeed useful for assessing behavior. The history of point-
light displays illustrates the amount of information avail-
able from very sparse amounts of nonverbal information.
Since Johansson [32] first showed that human observers
were capable of distinguishing biological motion using
films of confederates wearing black clothing and light
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markers on major joints, other studies have demonstrated
that humans are able to identify gender [33], sexual orienta-
tion [34], depression [35], and emotion [36] from this kind of
minimal information.

Computer vision systems that detect human motion have
often relied on analogous systems of optical markers worn
on the body to track movement over time. Similarly, new
video game interfaces such as the Nintendo Wii or Sony
Move require wands or other sensors in order for the users’
motions to be captured. The disadvantage of these kinds of
interfaces is that they require the user to wear or use partic-
ular devices, which can be intrusive or even distracting [37].
The recent trend of using active computer vision, for exam-
ple, the infrared systems that are employed in the Microsoft
Kinect, provides a compromise between accuracy and unob-
trusiveness, thus increasing the range of possible applica-
tions. This can be seen in recent papers successfully using
Kinect to detect specific gestures, such as pill taking, in nat-
uralistic environments [38], [39].

1.2.2 Study Design

Previous work that has utilized automatic systems to
examine nonverbal behavior in the domain of teaching
and learning has often focused more on design than eval-
uation. Metrics often concentrated on particular aspects
of either the teacher or the student’s contributions [3], [4],
[6], and few studies have combined an objective measure
of learning with input from both. We describe an experi-
ment determining whether the outcome of a teaching/
learning interaction could be predicted using naturalistic
body movements captured by commercially available
video game hardware.

We conducted a study assessing the interaction between
teachers and students in a naturalistic environment attempt-
ing to predict the outcome of a teaching/learning task. By
using unobtrusive interfaces, we hoped to record naturalistic
gestural and postural data. Using a large number of teacher/
student pairs, we aimed to capture general information about
teacher/learner interactions. Following previous research in
education [40], we broke our data set into subsets of increas-
ingly extreme high- and low-success pairs. This allowed us to
identify behaviors that could be more apparent in extreme
cases. In order to move beyond self-reported or observer-
coded rapport or engagement, we administered a written
memory test as a first step towards measuring learning out-
comes. Finally, we limited our focus to body movements
grouped by five body regions but avoided defining any spe-
cific gestures, for example, nodding the head to indicate
agreement. For a description of gesture categories see Roth,
[2]. In this way, we were able to examine regions of the body
in an anatomically meaningful way (by grouping movements
by the arms, legs, and torso/head regions) while avoiding
analyses based on specific gestures.

2 METHODS AND MATERIALS

2.1 Participant Population

An initial convenience sample of 160 participants (80
teacher-student pairs) was composed of undergraduate or
master’s students from a medium-sized West Coast univer-
sity, ranging in age from 18 to 22. The sample was evenly

divided between male and female participants, who were
randomly assigned to mixed or same-sex pairs. Twenty-
seven participant pairs were removed due to equipment
failure, or lack of sufficient amounts of tracking data
that was matched for both participants, leaving 53 pairs
(52 women and 54 men across all pairs). Participants
received either course credit or a 15-dollar gift card for their
participation. All participants signed an informed-consent
form before beginning any part of the experiment.

2.2 Apparatus

TwoMicrosoft Kinect [41] devices were used to capture par-
ticipants’ gestures and postures. These interfaces use an
emitter and an infrared camera to capture body movement
without requiring users to wear markers or hold any device.
The cameras are integrated into a small panel, approxi-
mately 12� 6� 5 inches in size, which weighs approxi-
mately 3 pounds. This small size and light weight allows
the device to be wall-mounted or set on a tabletop.

Although the Kinect used in this experiment did not cap-
ture facial expressions or detailed hand movements, its
tracking is noninvasive and can operate in low light condi-
tions at distances between 1.22 to 3.65 meters. For this
experiment, two Microsoft Kinect devices were used
simultaneously.

2.3 Procedure

The first participant, or teacher, was directed to stand on a
tape marker in the main lab room, facing the researcher.
Kinect cameras were attached to the walls in front and to
the right of each participant, so that each participant’s
movements were recorded without being obscured by his
or her conversational partner, as shown in Fig. 1. This posi-
tion was piloted to make sure the Kinects accurately tracked
participants.

The researcher informed the teacher participant that he
or she would be verbally taught a list of fifteen environ-
mental principles, along with examples that helped to illus-
trate those principles (see Appendix A, which can be found

Fig. 1. A bird’s eye view of the positions of the participants in relationship
to the Kinect cameras mounted on the walls.
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on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TAFFC.2014.2329304).
After this brief teaching session, he or she would then
teach that material verbally to a second participant.

The material to be taught was intended to be novel to
most participants. This allowed us to examine a large num-
ber of teachers who would all be on approximately equal
footing with each other, and also allowed us to examine
body movements that were not specific to the material. If
the material required the use of specific gestures (such as
describing volume or direction) or if an experienced teacher
had developed a routine for teaching the material, it might
be more difficult to generalize from those movements.

After the researcher recited the fifteen principles and
examples to the teacher participant, a second participant,
the student, was brought in. The teacher and student were
introduced. The experimenter then stated that the teacher
would have five minutes to teach the list to the student, after
which they would both take a brief written test. The experi-
menter then left the room and the participants began the
interaction. Both participants were recorded by the Kinects
throughout.

At the end of five minutes, or when signaled with a
raised hand by the teacher participant, the researcher reen-
tered the room and seated participants in separate rooms to
take a written free-recall test. Participants listed as many of
the principles that they had just been taught as they could
remember. A free recall test was selected in order to maxi-
mize the variance in responses.

2.4 Measures

The 15 answers on the test were graded by two raters trained
in the use of a key provided by the researcher. Since these
were free responses, there was some subjectivity in the grad-
ings. The rater’s initial scores correlated at 0.89. To provide
the most stable data set, two raters discussed the scores to
resolve differences in order to come to a complete consensus
on the entire data set. Student and teacher accuracy scores
correlated at 0.57. In order to account for the teachers’ ability
to recount the principles, the students’ scores were trans-
formed as a percentage of the teachers’ scores for each test.
Thus, if the teacher scored eight on the free recall test, and
their student also scored eight, the student would receive a
score of 1.0 (i.e., 100 percent). If the teacher scored 14 on the
free recall test, and their student only scored 7, the student

would receive a score of 0.5. Correct free recall scores for all
teachers ranged between 0.4 (six correct answers) and 0.93
(14 correct answers), with a mean of 0.63 and a SD of 0.14.
Adjusted scores for all students ranged between 0.13 and
1.30, with a mean of 0.71 and a SD of 0.19. A few students
reached scores higher than 1.0 as some teachers may have
mentioned items to the students but then failed to list those
items themselves on their own recall test. Histograms of the
teachers’ scores (Fig. 2) and the students’ adjusted scores
(Fig. 3) are shown above.

Since machine learning allowed us to use a bottom-up
approach to capture multiple aspects of gesture, we wanted
to cast a wide net for our initial analysis addressing the cen-
tral question of whether nonverbal behavior could predict
learning, but also examine how the behaviors of dyads at
various levels of extremity might differ. By removing the
middle of the distribution in the machine learning classifica-
tion, we avoided having to decide that a score of 0.73 was
“bad” while a score of 0.75 was “good.” Using the distribu-
tion from Fig. 3 based on the ratings of success, we divided
the pool of participant pairs into several different divisions
of high and low. We started with an inclusive definition of
high and low scoring pairs, taking the top 27 pairs, with
scores above 0.70 and the bottom 23 pairs, with scores below
0.67. These 50 pairs formed our Inclusive subset. We then
moved to a narrower definition of high and low scoring
pairs, using only the top 15 pairs, with scores above 0.80,
and bottom 16 pairs, with scores at or below 0.60, to create
our Moderate subset. Finally, we took only the extremely
high and low scoring pairs, comparing the seven participant
pairs in which the student had scored 0.92 or more, and the
seven pairs with a score of 0.50 or less. These 14 pairs com-
prised our Exclusive subset.

In each instance, we had a nearly equal number of data
points in each of the two classes, resulting in a baseline
(chance) performance of approximately 50 percent as a
comparison point for the success of our classifiers and
selected features.

2.5 Nonverbal Feature Extraction

The Kinect output consisted of gesture and posture informa-
tion from each of the teacher-student dyads time stamps.
Then it was labeled according to which Kinect was recording

Fig. 2. Histogram of raw teacher free recall test scores, which is approxi-
mately normally distributed.

Fig. 3. Histogram of student free recall test scores transformed as per-
centage of teachers’ scores. Note there are scores higher than 1.0 as
some teachers may have mentioned items to the students but not listed
those items on the recall test.
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the teacher and which was recording the student. Interaction
time between teacher and student lasted approximately
3 minutes. In order to ensure that we used exactly the same
amount of data from all interactions, we only used the first
two minutes of each interaction, as some interactions went
longer than others. This provided uswith themost consistent
data set, as we did not keep pairs for which the first few sec-
onds of data were not available for both participants. Each
Kinect recorded at 30 HZ, resulting in approximately 1,800
frames per minute (30 frames per second) for each partici-
pant in the interaction. The X, Y, Z positions of the 20 nodes
used by the Kinect to represent the joints of the skeleton
were recorded, as well as the overall position of the partici-
pant in the room calculated by combining those 20 nodes. In
addition, for each frame, data was collected on whether each
nodewas tracked, inferred, or not recorded at all.

We used 16 of the 20 nodes to create the modified skele-
ton seen in Fig. 4. We ignored the averaged node that repre-
sented the overall position of the participant, because there
was very little variance in this metric due to experimental
instructions to the participants to stay on their respective
tape marks. We also eliminated four nodes (both hand and
both foot nodes), which were not tracked as accurately as
the other nodes and were close enough to the wrist and
ankle nodes to be fairly redundant. These four deleted fea-
tures are represented in gray on Fig. 4.

To define our features, we calculated the angles for each
Kinect skeleton joint, extracting 18 angles per skeleton (e.g.,
the angle between the spine-to-left-shoulder “bone” and the
left-shoulder to left-elbow “bone”). We were not seeking to
identify specific gestures using top-down knowledge of
nonverbal communication. Instead, we sought to capture
more general qualities of body movement, while staying
true to the body’s natural anatomy within the confines of
the Kinect skeleton. The angles for the movement features
were calculated by taking the cosine value of two vectors.
An example below shows the distance between the shoul-
der (S) and elbow (E) nodes (1) and the elbow and wrist (W)
nodes (2):

VectorðS;EÞ ¼ ðx; y; zÞelbow � ðx; y; zÞshoulder (1)

VectorðE;WÞ ¼ ðx; y; zÞwrist � ðx; y; zÞelbow: (2)

Then, the angle between the two parts was calculated using
the distance between the two points, as in the following
equation:

u ¼ arccosðVectorðSEÞ; VectorðE;WÞÞ: (3)

Some nodes were involved in multiple “joints”, resulting
in more angles than the number of nodes. For example, the
left hip node formed an angle with the left ankle and left
knee nodes that roughly corresponded to the movements of
the left knee joint. However, the hip joint node was also part
of another angle with the spine and left knee that roughly
represented the movement of the left hip. All angles used
are shown in Table 1.

From each angle we derived a trace of its movement over
time, representing the measurement of the angle at each
frame, at 30 frames per second. From the changes in this
angle from frame to frame we took three measures: mean,
standard deviation, and skewness. Thus, for each partici-
pant in the dyad, we recorded 54 angle features (three meas-
ures for each of 18 angles).

Thus, the mean represented the average angle of the
joint, and the standard deviation represented the amount
that that angle varied over time. Skewness represented the
fact that people may move or bend a joint further (over a
wider range) in one direction, and was thus a measure of
how much each gesture deviated from the mean, rather
than a temporal measure of differing gestures at the begin-
ning or end of an interaction. Thus comparatively large
changes in angle would pull the mean away from the mode,
skewing it in the direction of these dramatic changes in
angle. The formula for skewness is shown below. X repre-
sents the variable X, mmm represents the mean, and sss represents
the standard deviation:

g ¼
X X � m

s

� �3
" #

: (4)

Finally, in order to reduce the redundancy of our feature
set and create features that related more clearly to human
gestures, we grouped the angle measures into five catego-
ries roughly corresponding to the each participant’s right

Fig. 4. The modified skeleton derived from Kinect data output in the form
of a wireframe. The wireframe consists of 16 nodes with X, Y, and Z val-
ues. The nodes in gray were not used in analysis. Angle a describes an
example of the angles that we extracted as features. In this case, the
angle that represents the shoulder was created from the spine, left
shoulder, and left elbow nodes.
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arm, left arm, right leg, left leg, and torso/head. Creating
sums of mean, standard deviation, and skewness for all the
angles between body segments within a body region also
allowed us to minimize the effects of occlusion on extremi-
ties (e.g., it was unlikely for all joints in a body region to
be occluded at once). Each measure represented the
entire interaction, such that there was one of each for the
entire 2-minute period.

In order to make sure that the movements of the
teacher and the student were being recorded during the
identical time period, we matched both the beginning
and ending timestamps of the north and west Kinects.
This ensured that, although our measures were summary
measures of the entire time period, they covered exactly
the same interval.

2.6 Classification

In order to generalize our results, we compared three differ-
ent algorithms, a strategy similar to those employed by pre-
vious research [13]. To reduce the risk of overfitting and
adjust for the fact that our features were not at all indepen-
dent, we used correlation-based feature selection as a start-
ing point to find the most useful features, and the optimal
number of these features to use for our predictions, as
described by Salvagnini et al. [27].

Because we had a relatively small data set, we used
leave-one-out cross validation as discussed by Witten and
Frank [42]. For our outcome measure, we compared the suc-
cess rates in predicting the students’ transformed scores. In
order to examine predictive ability between different

extremes of successful and unsuccessful teacher and stu-
dent pairs, we divided the data set into three different cutoff
groups, following Baron’s general strategy [40]. We also
examined which feature sets were most predictive in order
to look for meaningful explanations.

In order to be sure that ourmeasures of accuracywere con-
servative, we strictly separated training and testing data, fol-
lowing the procedure of Castellano et al. [23] and Hoque
et al. [13]. Each algorithm was evaluated using leave-one-out
cross-validation, removing one dyad in each subset of the
data from the original data set to be used as the test data, and
all other dyads remain as training data. This was repeated for
each dyad in each subset with the test samples removed prior
to both feature selection and classifier training, in order to
ensure that neither process would overfit to the training data
set. In other words, one pair was held out as the test sample
prior to feature selection. After feature selection, the number
of predictors in the data set was reduced to only the selected
features. The resulting model was then tested on the original
held-out pair, producing a hit, a miss, a false positive, or a
correct rejection. This train/test procedure was repeated n
times, until all pairs had been used as the test sample, and the
results were summed over the entire interaction. Thus, the
pair on which the prediction had been made had not been
used for either feature selection or training in that fold.

Following Castellano et al. [23], we used a filter-based
method of feature selection; correlation-based feature subset
evaluation. In this filter method, individual features are
evaluated based on their predictive ability as well as the
degree to which they are redundant with other features.
This helps to reduce a data set with many features that are
not independent.

We selected a decision tree algorithm (J48), in order to
help us visualize possible relationships between the data.
We selected Multilayer Perceptron (MP) since it is opti-
mized to accurately fit nonlinear patterns in the data. We
selected Logistic Regression (LR) because it is a relatively
simple but useful classifier to provide a baseline for other
classifiers, and it is less likely to overfit than more complex
classifiers. Thus, by selecting these three, we tried to create
a diverse sample of the available classifiers.

2.7 Tracking Accuracy

The accuracy of the Kinect system compared to other
motion capture systems has been tested by other researchers
who have found it to be sufficiently accurate to use in natu-
ralistic settings such as the workplace, even if less accurate
than other motion capture techniques [43]. However, the
format of our experiment may have added extra challenges
to tracking. Since the two participants were standing at a
conversational distance from one another, some of their ges-
tures may have occluded their conversational partner from
their respective cameras. In this case, we would expect
lower tracking on the right side of participants who were
recorded by the Kinect on the north wall, and lower track-
ing on the left side of participants who were recorded by
the Kinect on the west wall (see Fig. 1). In order to estimate
whether or not this occlusion took place, we examined the
degree to which nodes were inferred or tracked during the
course of the interaction in a random subsample of

TABLE 1
Movement Features

Features Summed For Head and Torso
1. Angle of head, shoulder center and spine nodes
2. Angle of shoulder center, spine and hip center nodes
3. Angle of right and left shoulder nodes and spine and
shoulder center nodes

4. Angle of right and left shoulder nodes, and head and
shoulder center nodes

5. Angle of right and left hip nodes, and right and left shoulder
nodes

6. Angle of right and left hips and spine and hip center

Features Summed For Right Arm
7. Angle of right and left shoulders and right elbow
8. Angle of spine, right shoulder and right elbow
9. Angle of right shoulder, right elbow and right wrist

Features Summed For Left Arm
10. Angle of left and right shoulders and left elbow
11. Angle of spine, left shoulder and left elbow
12. Angle of left shoulder, left elbow and left wrist

Features Summed For Right Leg
13. Angle of right and left hips and right knee
14. Angle of spine, right hip and right knee
15. Angle of right hip, right knee and right snkle

Features Summed For Left Leg
16. Angle of right and left hips and left knee
17. Angle of spine, left hip and left knee
18. Angle of left hip, left knee and left ankle
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12 participants (see Table 2). Occlusion was noted in the
elbow, wrist and ankle nodes italicized in the table but dif-
ferences elsewhere in the body were less than 5 percent.

In order to use a conservative measure of accuracy, we
only used data that was tracked, and did not include
inferred data. In order to be conservative about potential
synchrony in our summary measures, for each dyad, we
only included time stamps for nodes for which both partici-
pants had both nodes tracked (as opposed to inferred). In
other words, if the teacher’s wrist node was not tracked in a
given frame, the student’s right wrist node would also be
dropped for that time stamp, and none of the angles associ-
ated with that node for that time stamp would be calculated.

3 RESULTS

Our goals were to predict high and low success interac-
tions, to begin to assess which features might be driving

those interactions, and to find how more inclusive catego-
ries of high and low scoring pairs might increase predic-
tive power.

Table 3 presents the results. Using only a few coarse
measures of nonverbal features during a two-minute inter-
action, we were able to predict whether a teaching/learning
interaction would be successful or unsuccessful when look-
ing at more exclusive subsets.

Hits are correct identification of a pair as “good”, misses
are the incorrect identification of a pair as “bad”, correct
rejections are the correct identification of a pair as “bad”
and false positives are the incorrect identification of a pair
as “good”. Across all subsets, the J48 Decision Tree algo-
rithm provided the highest degree of accuracy, reaching
85.7 percent for the Exclusive subset. This was significantly
above the chance rate of 50 percent (p < 0:05). Accuracies
were highest for all classifiers used when comparing the
most extreme cases of success or failure, with the Exclusive
subset of participants. Accuracies declined as the subsets
became more inclusive, reaching chance when 50 out of the
original 53 pairs were included in the good/bad division.

In order to ensure that overfitting did not occur on
the Exclusive data set, we compared leave-one-out cross

TABLE 2
Percentage of Tracked versus Inferred Nodes

Node North West

Head 99.85 99.76
Shoulder Center 1 99.99
Left Shoulder 99.41 95.99
Right Shoulder 95.25 99.22
Spine 99.99 99.99
Hip Center 99.99 99.99
Left Elbow 96.41 72.28
Right Elbow 73.24 99.14
Left Wrist 82.21 50.99
Right Wrist 69.36 88.52
Left Hip 99.99 99.99
Right Hip 99.99 99.99
Left Knee 99.17 97.10
Right Knee 94.38 95.84
Left Ankle 92.58 91.88
Right Ankle 87.99 95.85

The percentage of nodes tracked as opposed to inferred by the
North and West Kinects. Nodes that showed a difference in accu-
racy between North and West Kinect recordings of greater than 5
percent are italicized. All dyads were counterbalanced, such that
teachers were randomly assigned to be recorded by either the
North or West Kinect. This was done to ensure that Kinect
assignment would not be confounded with participant role.

TABLE 3
Predicting Teaching/Learning Success

HitsMisses Correct
Rejections

False
Positives

Accuracy

Exclusive (14 pairs)
J48 6 1 6 1 85.7%
MP 6 1 4 3 71.4%
LR 6 1 4 3 71.4%
Moderate (31 pairs)
J48 6 9 16 0 71.0%
MP 5 10 16 0 67.7%
LR 7 8 10 6 54.8%
Inclusive (50 pairs)
J48 27 0 0 23 54.0%
MP 21 6 3 20 48.0%
LR 18 9 4 19 44.0%

Inclusive indicates the top 27 and bottom 23 pairs, Moderate the top 15 and
bottom 16 pairs, and Exclusive the top 7 and bottom 7 pairs. The classifiers
used were decision tree (J48), Multilayer Perceptron (MP) and Logistic
Regression (LR).

Fig. 5. The three features that demonstrated significant correlations with score are plotted against the scores for each pair.
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Fig. 6. The above plots show each of the features selected as predictive in at least one fold, for at least one subset, of high and low success pair.
Each column represents one subset, beginning with the Exclusive subset on the left hand side. The Y -axis of each plot represents degrees in the
case of plots showing the mean or standard deviation (summed across joints within the body region), but is a sum of integral distances from the
mean in the case of skewness, which can also be positive as well as negative.
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validation to five-fold cross-validation, averaging the accu-
racy over the five repetitions. The patterns of accuracy were
similar, with an average accuracy of 74.8 percent over all
three algorithms for the five repetitions (M ¼ 84:3% for J48,
M ¼ 68:6% for MP,M ¼ 71:4% for LR).

In Fig. 5, the three features that demonstrated significant
correlations with score are plotted against the scores for
each pair. Fig. 6 shows the different predictive features for
each subset. For each subset, between one and five features
were chosen for each fold. In order to provide the most pre-
dictive features, we used the features that appeared in at
least 10 percent of the 25 folds in five-fold cross-validation
repeated five times. The distribution of features can be
found in Table 4.

In order to learn more about the relationship between
features and the outcome, in addition to the machine learn-
ing algorithms, we also computed correlations between fea-
tures and the outcome of the students’ adjusted scores.
Table 5 presents those results. Summed mean, standard
deviation, and skewness measures all appeared as predic-
tive features. The correlations tended to be higher in magni-
tude for the smaller, more restrictive subsets compared to
the larger ones, confirming the pattern that the most
extreme success patterns were easiest to predict. The risk of
type 1 errors cannot be discounted when dealing with large
numbers of correlations. Out of the 24 correlations shown,
two were significant at the 0.05 level, two at the 0.01 level,
and two at the 0.001 level. Since our feature selection was
based on correlation, this is not too surprising, but the mag-
nitude of some of the correlations may provide a starting
point for further investigation.

Interpreting these features can be challenging due to the
bottom-up nature of how they were computed. The feature
comprised of summed standard deviations of the movements

of the teacher’s head and torso, which was very predictive
during machine learning in the most extreme division
between high and low success pairs, correlated negatively
with the student’s transformed score for all subsets, at �0.68.
The feature comprised of the summed skewness measures of
the student’s head and torso showed a similar negative cor-
relation of �0.60. Thus, negative skewness, or movements
that decreased the mean of the participants’ torso angles,
was predictive of outcome. One example of a body move-
ment that might produce negative skewness would be occa-
sional nods in a person who otherwise kept their head more
or less upright. This would pull the mean angle of the head
over time below the median, upright. However, since neither
specific semantic gestures nor directionality were defined in
our measure, interpretation remains speculative.

Finally, since synchrony has been indicated as an element
of success in teaching and learning, we examined the correla-
tions between the corresponding gestures of the teacher and
the student, shown in Table 6. Significant correlations were
found in two out of six features. While these correlations
may be viewed as predictive features in their own right,
examining synchronywill requiremore granularmethods.

4 CONCLUSION

In the study described above, we demonstrated the ability
of an automated affective computing system to analyze nat-
uralistic body movements, and, using these movements,
assess the qualities of a teaching/learning interaction. Our
results support the view that in such pairs, the nonverbal
behavior of both the teacher and student can predict the
success of the outcome.

We will first discuss areas that could be improved and
then address bigger questions about the direction of future

TABLE 4
Percentage of Folds in Which Predictive Features Appear for Each Subgroup

All Pairs Inclusive (50 pairs) Moderate (31 pairs) Exclusive (14 pairs)

Standard Deviation of Teacher’s Head and Torso 44% 100%
Skewness of Student’s Head and Torso 12% 56% 20%
Mean of Teacher’s Head and Torso 80%
Mean of Teacher’s Left Arm 40%
Standard Deviation of Teacher’s Right Leg 32%
Skewness of Student’s Right Leg 16%

These percentages reflect the number of folds, averaged across five repetitions, in which these features appear. Features that appeared in fewer than 10 percent of
folds are not listed.

TABLE 5
Correlations between Predictive Features and Score

All Pairs Inclusive (50 pairs) Moderate (31 pairs) Exclusive (14 pairs)

Standard Deviation of Teacher’s Head and Torso �0.26y �0.26y �0.28 �0.68��

Skewness of Student’s Head and Torso �0.45��� �0.48��� �0.51�� �0.60�

Mean of Teacher’s Head and Torso 0.06 0.06 0.12 0.38
Mean of Teacher’s Left Arm �0.20 �0.21 �0.33y �0.54�

Standard Deviation of Teacher’s Right Leg �0.18 �0.18 �.20 �0.23
Skewness of Student’s Right Leg 0.17 0.17 0.27 0.42

y p < 0:075, � p < 0:05, �� p < 0:01, ��� p < 0:001. Features used in machine learning analysis for each subgroup are in bold print in those columns. (Note
that the tests involving fewer pairs are more conservative in terms of significance.)
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work. Finally, we will discuss how this work intersects with
current and future applications of technology detecting
affect via body movements.

4.1 Limitations

Our metric for learning, a brief free recall task, is necessarily
limited, and does not examine constructivist or active learn-
ing. In addition, our sample of convenience, which con-
sisted of university students, may have consisted of more
motivated and experienced learners than the average. Fur-
ther, since both “teacher” and “student” roles were filled by
actual student participants, differences in age and authority
often apparent in traditional teacher-student roles were not
present in our experiment. Finally, in a normal classroom
study, the teachers are experts in the subject matter they
teach; while in our study the “teachers” had only learned
the subject material a few minutes before the students. The
correlation between student scores and teacher scores does
not take into account differences in interest, enthusiasm and
prior knowledge. While teachers with higher scores had
more information to impart to students, this relationship in
our analysis was complicated by the fact that students’
scores were divided by teacher scores, so that students who
had very low scoring teachers had to list fewer principles to
achieve a “grade” of 100 percent. In addition, teachers may
have remembered additional answers during the written
test that they did not impart during the teaching interaction,
or may have forgotten to write down answers that they had
taught to their students. Thus, our metric for capturing
learning was imperfect. To truly capture the nature of a
teaching interaction, real teachers interacting with real stu-
dents should be recorded.

In general, the model tended to predict low-scoring pairs
more accurately than high-scoring pairs (in other words,
there were fewer false positives than misses, overall). This
may also be due to our metric of capturing learning. Since
success in the interaction was designed to take into account
the teacher’s score on the material as well, some pairs that
had a high adjusted student score might have had their
score artificially boosted because the teachers simply did
not remember or write down very many environmental
principles themselves. Thus, high-scoring pairs included
both teachers who learned the material well themselves,
and teachers who did not. These pairs may have differed in
their behavior.

Other limitations due to the system design must also
be considered. The possibility of occlusion when two

participants are standing at a conversational distance
should not be dismissed, as we see from Table 1 that it
was a likely cause of reduced accuracy. However, the
tradeoff for environmental validity may be worthwhile for
many applications.

Moreover, the requirement that participants be standing,
may also well have affected interpersonal dynamics. One
area for useful future work is thus to examine how body
movements may be predictive in other situations, such as
when all participants are seated. As technologies are tai-
lored for specific environments, these limitations may be
considered on a case-by-case basis.

The measures that we used for our analysis were fairly
coarse and very bottom-up. We did not look at specific ges-
tures, instead summing total movement by body region.
Thus, the way in which we derived our features does not
allow us to make predictions about the meaning of specific
gestures. Also it is important to remember that we cannot
make causal inferences from the data- it would be simplistic
to conclude that too much movement in the teacher’s head
and torso leads to poor learning outcomes.

4.2 Future Directions

Following the techniques used by previous work in educa-
tion, in this initial study we examined subsets of the data
consisting of very high and very low scoring pairs. These
most extreme cases were predicted with an average accu-
racy of 76.1 percent, and a high of 85.7 percent, and the mag-
nitude of the linear correlations between predictive features
and the accuracy scores generally increased as the cutoff
became more restrictive.

While the features chosen using our filter method were
primarily drawn from the teachers’ movements when pre-
dicting the subset of the most extreme division of good and
bad, student features were also selected as predictive when
examining more general divisions at the Moderate level of
31 pairs. This may indicate that while teacher movements
differ greatly in very successful and unsuccessful pairs, stu-
dent gestures may indicate a certain level of attentiveness
that also correlated with success. However, in order to
investigate the meaning of these gestures, our teaching and
learning task must be refined.

Finally, some of the predictive gestures demonstrated sig-
nificant correlations between teacher and student gestures.
The two features selected to be most predictive, the summed
standard deviations of the teacher’s head and torso and the
summed skewnesses of the student’s head and torso seem

TABLE 6
Correlations between Student and Teacher Features

All Pairs Inclusive (50 pairs) Moderate (31 pairs) Exclusive (14 pairs)

Standard Deviation of Teacher’s Head and Torso 0.40�� 0.40�� 0.33y 0.31
Skewness of Student’s Head and Torso �0.03 �0.04 �0.03 0.08
Mean of Teacher’s Head and Torso 0.15 0.16 0.28 0.20
Mean of Teacher’s Left Arm 0.13 0.17 0.15 0.20
Standard Deviation of Teacher’s Right Leg 0.37� 0.36� 0.31y 0.43
Skewness of Student’s Right Leg �0.05 �0.06 �0.06 �0.24

y p < 0:075, � p < 0:05, ��p < 0:01, ��� p < 0:001. Features used in machine learning analysis for each subgroup are in bold print in those columns. (Note
that the tests involving fewer pairs are more conservative in terms of significance.)
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likely to be related. Interactional synchrony, perhaps linked
with mirroring or matching behavior, may have been a com-
ponent of the predictive power of the interaction, although
the lack of a temporal component to our feature set makes it
difficult to prove. Interpersonal synchrony has been studied
inmany contexts (for a review see Delaherche et al. [44]). Evi-
dence has been found that manipulating synchrony can
increase rapport [45], and in two studies particularly rele-
vant to learning, induced interpersonal synchrony can
increase memory of the partner’s speech [46], [47]. The more
specific synchronous behavior of mimicry appears similarly
important in both generating and recognizing rapport and
other affiliative behaviors (for a review, see Chartrand and
Lakin [48]). Adding ratings of rapport and correlating these
ratingswith a quantitativemeasure could provide additional
support to a hypothesis of synchrony supported by a more
fine-grained analysis of gesture.

Although it is tempting to over-interpret the features that
are selected to be most significant, it is important to keep in
mind that the set of features selected relies on relationships
within the models that are not necessarily intuitive. Further
investigation is required to interpret these findings.

Finally, while we examined the predictive power of fea-
tures from both the teacher and the student, other features,
such as proximity, were not included in our model. Such
combined features may hold the potential of being very
predictive, though of course research would need to take
into account differences in culture, gender, age, degree of
acquaintanceship and other individual differences. These
features are natural targets for future work in this area. As
suggested by other research [49], adding higher level,
semantically interpretable features may improve accuracy.
In addition, beyond body movement, adding the tracking
of other modalities is also likely to lead to greater success
in affect detection [50].

Accuracies of 85.7 percent were obtainable using only
120 seconds of the interaction. This aligns with previous
research demonstrating the effectiveness of a thin slice of
observation in interpreting interactions [28]. Determining
whether behavior at the beginning, middle, or end of an
interaction is most predictive is a potentially productive
area of investigation.

Our ability to predict outcomes also speaks to the poten-
tial of active computer vision systems, such as the Kinect, to
collect useful data in a naturalistic environment. Although a
degree of occlusion took place, as evidenced by the percen-
tages of nodes that were inferred rather than tracked
depending on the camera angle (see Table 1), our algorithms
were still able to make predictions at rates considerably
higher than chance. Although the skeleton derived from
Kinect tracking data is clearly not completely anatomically
accurate, we were able to make useful predictions without
even using all of the available nodes. This underlines the
usefulness of low-level features in general affect detection
that is not specific to a given situation. It also implies the
opportunities that may exist for collecting data through
other interfaces, such as touchscreens [25].

Future research may include comparing changes in a
participant’s nonverbal behavior, and changes in outcome,
with different interaction partners. Another avenue could
be to compare nonverbal behavior and outcomes over time,

which might provide clues to how interactions can be
guided for better outcomes.

Another fruitful area of investigation may be consider-
ing intercultural communication through the lens of ges-
tural interaction. The presentation and interpretation of
affect from body posture has also been shown to change
depending on the culture of the observer [51]. Do the sim-
ple gestural measures we obtained from a group of Amer-
ican undergraduates apply cross-culturally? Can these
measures be used to improve cross-cultural communica-
tion, or can other tools be built to assess these kinds of
interactions?

4.3 Possible Applications

Embodiment in interactive environments is increasingly
validated as important to engagement, social interactions,
and enjoyment. Learning what nonverbal behavior to
track, and how it should most effectively be rendered in a
mediated or virtual environment is important in designing
and assessing actions in such environments. Extensive and
ongoing research has examined what kinds of nonverbal
behavior embodied agents should utilize for greatest effec-
tiveness [52], including how this behavior should be guided
by the nonverbal behavior of the human conversational
partner. Further examining what movements may be most
helpful to further an interaction will aid in these goals.

Optimizing partnerships in general, either by assessing
nonverbal behavior in real life, or mediating nonverbal
behavior effectively, is one very interesting possible arena
for applications. Giving people feedback on the nonverbal
components of their interaction in real time may allow them
to adjust their nonverbal behavior to positively affect the
outcome of those interactions. For example, providing teach-
ers or tutors with this kind of feedback in real time could
improve teaching outcomes. Physicians interacting with
patients might use this to practice building rapport with
patients. Leveraging the tracking of nonverbal behavior can
even be a tool to learn to reduce social anxiety by improving
social skills (similar to recent work utilizing facial expres-
sion [53]), or to aid in conflict resolution. In addition, such
tracking of nonverbal behavior could be used to improve
the nonverbal behavior of embodied agents.

Beyond the general importance of rapport generated by
nonverbal communication, the success of teaching and
learning situations in particular may involve body move-
ments. Embodied cognition researchers propose that infor-
mation processing is conducted using the body [54]. This
view is supported by work by Goldin-Meadow and col-
leagues, which indicates that gestures may signal important
stages in learning [55], and that the way teachers recognize
and react to these gestures may help to determine learning
outcomes [56].

In addition, gestures and body movement in general can
also change the person who engages in them, physiologi-
cally, psychologically and behaviorally. This means that
detecting and offering feedback on gestures and body move-
ments can be leveraged to good effect in a number of areas.
Because tracking body movements in particular may reveal
behavior of which the participants themselves may not be
aware, such systems may also hold the possibility of
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providing information that can assist an interaction in real
time. For example, feedback on body movements has been
suggested as a method to mitigate chronic pain [57]. Encour-
aging body movement has been proposed as crucial for
game applications in particular [58], especially in increasing
engagement, enjoyment, and affective experiences [59], [60].
Increasing the extent to which gestures can be tracked and
incorporated into games has been proposed to decrease anxi-
ety in movement based learning games [61] and increase
social engagement in collaborative games [62], [63].

Ethical concerns may well arise with the use of this
technology to assess individual performance [64]. While
assessing the quality of interpersonal interactions has obvi-
ous applications, both users and developers must be mind-
ful that the measurements taken do not necessarily reflect
the qualities of the individuals involved, but whether a sin-
gle short-term interaction between two individuals in a
dyad is likely to be successful. Thus, this technology may
be more usefully applied to optimize partnerships, for
example, by providing feedback to existing dyads, or by
reassigning individuals to pairs whose nonverbal behavior
predicts better learning. In addition, a balance must be
struck between recording behavior without participants’
awareness, risking deception, and making participants
self-conscious about being monitored, which might reduce
the validity of the predictions as well as create an oppres-
sive environment.

The automatic assessment of gesture can, thus, not only
predict behavior, but also may provide users with new tools
to understand and engage with their own behavior in ways
that have never before been possible. As D’Mello and Calvo
point out, [65] more objective methods of data collection
and analysis can guide the development of new technolo-
gies, as well as promote the study of affect’s impact on activ-
ities in the real world.
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